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ABSTRACT 
 

We introduce linear programming as a relevant discipline and show how to define a linear               
program using decision variables and constraints. We show how to solve basic linear             
programming problems by graphing. Then we get into more complicated solutions, and            
implement methods such as the Simplex Algorithm, the Ellipsoid Algorithm, and various            
Interior-Points Algorithms. We show variations on the aforementioned algorithms, and offer           
methods for someone to arrive at the best possible solution. We discuss the importance of               
technology for solving complex linear programs that would take days or months to do by hand.                
We parse through functions for one specific program, the IBM ILOG CPLEX Optimization             
Studio, to illustrate this point. Functions include the Simplex Optimizer, Dual-Simplex           
Optimizer, and Barrier Optimizer. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



PROBLEM STATEMENT 
 

Linear programming is an optimization technique to maximize or minimize a linear 

function over a set of given constraints. 

Linear programs have various applications within the real world. Manufacturing 

industries often use linear programs to analyze their supply chain operations. They look for 

models with maximum efficiency and minimum operations costs.1  

Businesses such as Amazon and FedEx use linear programs to optimize delivery routes. 

This is an extension of the Travelling Salesman Problem (TSP) in graph theory. In the TSP, the 

traveling salesman needs to go through n cities that are plotted on a graph. The objective is to 

calculate the most efficient route with the least total distance.2 Transit companies attempt to find 

routes that minimize both cost and time. In this case, cost and time are the decision variables. 

The decision variables are the outcomes which will decide the output. Decision variables 

have a non-negativity restriction, meaning that they only take values greater than or equal to 0. 

This restriction is reasonable since linear programs deal with activities or resources, which only 

exist over a positive domain. 

In order to define a linear programming model, start by identifying the decision variables. 

Then write the objective function. Let’s assume that our decision variables are X and Y, and Z is 

our maximum or minimum value. Then,  Next, figure out the constraints, and aX  Y .Z =  ± b  

express them as inequalities. These should be in the form . Finally, account for theX  Y  c ± d ≤ e  

non-negativity restriction. Set and .X ≥ 0 Y ≥ 0  

One of the most common approaches to solving a linear programming problem is by 

graphing the constraints, and then plugging back into the objective function. Take the equation 



with constraints , , and 50X  120Y  Z =  +  00X  200Y 0, 001 +  ≤ 1 0 0X  30Y 2001 +  ≤ 1  

 over the domain and the range . (Note:10X + Y ≤ 1 X ≥ 0 Y ≥ 0 00X  200Y 0, 001 +  ≤ 1 0  

simplifies to , and simplifies to .) 2Y 00X +  ≤ 1 0X  30Y 2001 +  ≤ 1  3Y 20X +  ≤ 1  

Figure 1. Solving a LP through Graphical method. 
(https://www.analyticsvidhya.com/blog/2017/02/lintroductory-guide-on-linear-programming-explained-in-simple-en
glish/) 
 
The constraints intersect at the point (60, 20), making this our optimal solution. Plug in 60 and 

20 for X and Y  to get .400Z = 5   

Generally, linear programs have more than 2 decision variables. The number of decision 

variables is always equal to the number of axes. Although 4D, 5D, 6D, etc. data can be 

visualized in Python and other engines, it is very hard to graph linear programs in more than 3 

axes.3 Thankfully, there are alternative methods to solving linear programs which include the 

Simplex Algorithm, Ellipsoid Algorithm, and Interior-Point Algorithms. 

The idea of the Simplex Algorithm (1947) is to start at some “corner” of a feasible 

region, and then iterate over other corners looking for the optimal position. This method is 

shown geometrically in Figure 2. 

 



Figure 2. The Simplex Algorithm. 
(https://ibmdecisionoptimization.github.io/tutorials/html/Linear_Programming.html) 
 

The Ellipsoid Algorithm (1980) is a later model that solves the “feasibility problem” and 

then enables one to find the solution using a binary search of the objective function. Start with a 

large ellipse (or ellipsoid, for higher dimensions) that surely contains the feasible region. 

Continue to shrink the ellipse by a factor of until the center of the ellipse complies with all1 − n
1  

of the constraints.4 

Interior-Point Algorithms (1984) work with feasible points in a manner that’s similar to 

the Simplex Algorithm. However, they actually start within the feasible region, rather than at the 

corners. One of the more popular algorithms is the Barrier Optimizer. The barrier method 

moves through the interior of a region, using a predictor-corrector to determine its path.5 The 

optimizer is part of IBM ILOG CPLEX Optimization Studio, an optimization software package 

for C++, C#, Java, and Python code, that is one of the leading tools within the field. Python is the 

go-to language at the moment for machine learning, making this combination efficient towards 

uncovering new developments in technology. 

 

 



RELATED RESEARCH 

a. Mathematics of the Simplex Algorithm 

As discussed earlier, the Simplex Algorithm was the first method to optimize data over a 

set of given constraints. Starting from a vertex of the feasible region, we iterate over the outer 

area of the region in order to find the location of the optimal solution.  

Pivoting is a process whereby a matrix can yield various solutions for a system of 

equations. This is the general equation for a system 

 x  x ..  x  a 11 1 + a 12 2 + . + a 1n n = b 1  
 x  x ..  x  a 21 1 + a 22 2 + . + a 2n n = b 2  

… 
 x  x ..  x  a m1 1 + a m2 2 + . + a mn n = b m  

where . 6 A matrix depicting the linear system would look like this:m ≤ n  

 
Figure 3. Standard Matrix. 
 
A matrix is said to be in reduced echelon form, or canonical form, if each pivot (defined as the 

element where ) is equal to 1, and other elements in the same column as the pivot have am = n  

value of 0.  

 
Figure 4. Example of Reduced Echelon Form 



The feasible solutions for the constraints are derived by pivoting in a matrix, and then solving for 

feasible points. There are often multiple solutions for our domain (disregard negative solutions), 

and we must find the optimal solution on each corner by plugging back into the equation. 

Consider the equation Z = 100X + 50Y - 25Z with the following constraints: 

   a 1 + a 2 − a 3 = 5  
a a  2 1 − 3 2 + a 3 = 3  

 a  − a 1 + 2 2 − a 3 =  − 1  

We can form an augmented tableau by using the following notation: 

x1  x2  x3  x4 x5  x6  
1   0   0   1   1  -1   5 
0   1   0   2  -3   1   3 
0   0   1  -1   2  -1  -1 

Multiply each row by a constant and then add them repeatedly until you obtain an answer in 

reduced echelon form. You derive the following matrix: 

x1  x2  x3  x4 x5  x6  
1   -1  -2  1   0   0   4 
1   -2  -3  0   1   0   2 
1   -3  -5  0   0   1   1 

The solutions are x4 = 4, x5 = 2, and x6 = 1. 

These are possible solutions of the linear system. There are 4 options available for 

reduced echelon form. Obtain all of these points and then see which one yields a maximum or a 

minimum after plugging into the objective function. 

 

 

 

 



b. Mathematics of the Ellipsoid Algorithm 

Although the Ellipsoid Algorithm is actually slower than the Simplex Algorithm, it was 

the first step towards coming up with other approaches to linear programs.7 It can be thought of 

as the intermediary between the Simplex Algorithm and later Interior-Point Algorithms.  

The problem takes the following form: 

maximize cT x 
x A ≤ b  

x ≥ 0  
where A is a m x n real constraint matrix and x, .c∈ Rn  

Rn is an infinite set of all the space available geometrically. A general ellipsoid in Rn can 

be expressed as where B is a positive matrix. Start by checking cT x againstB(x )(x )− a T − a ≤ 1  

an estimate of the maximum value c0 . Set . If the system is infeasible, the optimumc xT ≥ c0
  

must be less than c0. Decrease c0 by a factor of 2, and repeat until you obtain the feasible region 

[c0/n, c0). This is the easiest way to work with the “feasibility problem” mathematically.  

Other variants also use the separating oracle to solve this issue. A polynomial time 

separating oracle either tells that (this can be thought of as the null hypothesis, H0) orx∈ K  

returns a hyperplane separating x from K (the alternative hypothesis).  

Consider a bounding ellipsoid E0 that takes into account all constraints for a linear 

program. The minimum volume ellipsoid surrounding a half ellipsoid can be calculated in 

polynomial time using the following equation: 

ol(E ) 1 ) V ol(E )V i+1 ≤ ( − 1
2n i  



Thus, using a while loop in a linear program, this repeated equation makes the ellipsoid 

algorithm very beneficial theoretically. However, this would have to be repeated so many times 

that the Ellipsoid Algorithm becomes impractical for real-world usage. 

 

c. Instances of Interior-Point Algorithms 

Interior-Point Algorithms are faster and more efficient than the Simplex Algorithm or the 

Ellipsoid Algorithm. They work by formulating large linear programs as nonlinear problems and 

solving them with various modifications of nonlinear programs. 

Primarily, we should understand notions. For any function f :  the gradient ∇fRn → R  

of f is defined as the vector of its partial derivatives.8  

Figure 5. Vector of Partial Derivatives 

The matrix of second partial derivatives (Hessian Matrix) takes on the following form: 

 

Figure 6. Matrix of Second Partial Derivatives 

Assume that any function f is twice continuously differentiable for the gradient and matrix to be 

defined. Let the class of the function be equal to C2. 



Notions become significant through Newton’s Method, where orbits of greater degree 

converge linearly, forming the basis for a solution using interior points. The linear approximation 

of a function f can be represented using the formula: 

 (x) (x ) f (x ) (x )f = f 0 +∇ 0
T − x0  

Similarly the quadratic approximation of a function f can be represented using:

(x) f (x ) f (x ) (x ) (x ) H(x )(x  )g =  0 +∇ 0
T − x0 + 2

1 − x0
T

0 − x 0  

Newton’s Method starts with a point (x0) on all curves and then evaluates new points (x1, x2, … , 

xn) until it finds convergence. At this point there is a solution to the linear program. 

This solution still has to be evaluated for relevance (does it make sense in the context of 

the problem?) and time (efficiency). If the appropriate conditions are met, then this point is a 

solution to the linear system. 

There are other ways to solve Interior-Point Algorithms. Many of these methods are 

complicated and only suitable for proficient mathematicians with a background in multivariable 

calculus. These include artificial primal and dual linear programs.9 They are noticeably more 

challenging than the Simplex Algorithm or Ellipsoid Algorithm, which may explain why they 

took so many more years to implement. 

 

 

 

 

 

 



d. Importance of Technology for Solving Linear Programs 

Linear programs are solvable in a variety of programming languages and solvers, 

including but not limited to Pyomo, AMPL, LINDO, MATLAB, and OptimJ. For this paper, we 

will be focusing on the CPLEX Optimizer for solving linear programs. We will look at 3 

methods, the Simplex Optimizer, Dual-Simplex Optimizer, and Barrier Optimizer. The aim 

is to show the importance of technology for linear programming, so we do not go into too much 

depth about what this means on the computer science side of things. 

The Simplex Optimizer works identically to the Simplex Algorithm described in the 

previous section of this paper. The Dual-Simplex Optimizer uses an important mathematical 

concept, duality, to solve linear programs. Every linear program has a dual problem: for 

maximization problems, this is the minimization problem. On the other hand, for minimization 

problems this is the issue of maximization. The Dual Simplex Algorithm implicitly uses the dual 

to arrive at an optimal solution faster than the original problem. 

 
Figure 7. Primal and Dual Pair. 
(https://ibmdecisionoptimization.github.io/tutorials/html/Linear_Programming.html#Algorithms-for-solving-LPs) 

Finally, the Barrier Optimizer is an example of an Interior-Point Method. It uses a 

predictor-corrector algorithm to constantly adjust its movement throughout the center of a 

feasible region. CPLEX algorithms give the user power to implement different techniques to 

solve linear problems, and it’s the programmers decision how to incorporate them. 



Now imagine what would happen if we eliminated technology for linear programming. 

Although we would still be able to solve simple problems using graphing or the Simplex 

Algorithm, complicated problems would become virtually impossible to solve on paper. The 

Ellipsoid Algorithm uses a while loop to apply a formula over and over. Doing the same 

calculations by hand would become a tedious process that would take hours upon hours of 

handiwork. Interior-Point algorithms are ingrained in technology. They are applicable in 

programming languages and solvers such as the CPLEX Optimizer. Take the optimizers away 

and linear programs are virtually impossible to solve by hand for many dimensions and 

constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 



CONCLUSION 

We solved linear equations using the 

● Simplex Algorithm 

● Ellipsoid Algorithm, and 

● Interior-Point algorithms 

Higher order linear programs10 include 

● Integral linear programs, and 

● Mixed fractions linear programs 

Additionally, there are interior-point algorithms that we did not solve. 

These should be considered for further research. 
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